
OM2B.6.pdf OFC/NFOEC Technical Digest © 2013 OSA

GPU-based Parallelization of System Modeling 
 

S. Pachnicke 
 ADVA Optical Networking SE, Maerzenquelle 1-3, 98617 Meiningen, Germany 

spachnicke@advaoptical.com 

 

Abstract: Simulation of fiber-optic transmission systems using general purpose-computing on 

graphics processing units is investigated. It is shown that a speedup factor of more than 100 

can be achieved compared to CPUs without loss in accuracy. 

© 2012 Optical Society of America 

OCIS codes: (060.2330) Fiber optics communications; (220.4830) Systems design 

 

1. Introduction 

Modeling and simulation play a major role in research and development of optical transmission systems. 

Optimum design of such systems is crucial to make best use of optical transmission equipment which requires 

very high capital expenditure. Especially accurate modeling of the fiber is important as it is the key component 

of optical transmission networks. Propagation of light in a single-mode glass fiber, which is used almost 

exclusively for long-distance communications today, is described by the nonlinear Schrödinger equation, which 

is solved in state-of-the-art transmission system simulators by the split-step Fourier method (SSFM) for 

arbitrary input conditions. Unfortunately, even on today’s computer systems the simulation of a wavelength 

division multiplex (WDM) transmission system with a high channel count, long bit sequences and a 

transmission distance of several thousand kilometers is still very time-consuming with computational efforts of 

many hours to several days. 

This is why already more than a decade ago parallelized implementations of the SSFM have been 

investigated [1]. At that time only supercomputers made possible the use of several processors in parallel with 

access to a shared memory. Since then the development of central processing units (CPUs) progressed rapidly 

with year-over-year increasing performance values (usually measured in floating-point operations per second, 

Flops). Nowadays also CPUs of desktop or notebook PCs usually comprise several cores. For several years, 

however, the performance of graphics processing units (GPUs) has been increasing much faster than estimated 

by Moore’s law [2] (compare Fig. 1) mainly to meet the requirements of computer games and entertainment 

applications [3]. Today GPUs by far exceed the computational power of CPUs. This high performance makes 

GPUs very attractive as co-processors for general-purpose computation. Current graphics cards offer a high 

number of processing cores at a reasonable cost and are already available in many standard desktop PCs, which 

are typically used by a system designer.  

In this paper the benefit of using GPUs in modeling of fiber-optic transmission systems is quantified. As 

many graphics cards show a significantly higher performance in single precision (SP) arithmetic (because the 

main target group is computer gamers, where high accuracy is not key) also SP-based algorithms are 

investigated regarding speedup and accuracy, and methods for increasing the accuracy of the algorithms are 

discussed.  

 

Fig. 1. Development of the computational performance (measured in GFlop/s) for selected CPUs and GPUs.  

Note that peak performance of a GPU is achieved only in single precision arithmetic. 

2. Parallelized Implementation of the Split-Step Fourier Method 

The SSFM, which is used to solve the nonlinear Schrödinger equation (NLSE), computes the linear part of the 



OM2B.6.pdf OFC/NFOEC Technical Digest © 2013 OSA

NLSE in frequency domain and the nonlinear part in time domain [4]. As both parts are treated independently 

only small step-sizes are admissible to keep the error low, which results from insufficient consideration of the 

interaction between the linear and nonlinear operators. For each split-step a fast Fourier transform (FFT) and an 

inverse FFT are required for conversions from time to frequency domain and vice versa. The total computational 

time for a typical system simulation with non-negligible fiber nonlinearity is thus dominated by the calculation 

of FFTs (and IFFTs, respectively). The implementation of discrete and fast Fourier transforms on a GPU has 

been studied extensively in recent years (compare e.g. [5]). FFT routines are available in the form of pre-

compiled libraries for GPUs (such as the CUFFT library by NVIDIA). The performance of such algorithms on a 

GPU, however, strongly depends on the hardware architecture and the clock rate of the different memories and 

caches involved [6]. This is why an auto-tuning algorithm – automatically selecting the optimum factorization 

(choice of radix) for a certain FFT length and accounting for the characteristics of a specific graphics card – is 

advantageous (as explained in [7], [8]).  

Another important aspect is the accuracy of the results. The accuracy of an FFT can be measured by 

assessing the backward error, which is calculated by performing an FFT and IFFT operation for an arbitrary 

input sequence and comparing the results to the initial sequence. For double precision (DP) arithmetic the 

backward error (rmse) lies in the range of 10
-7

, independently of the execution on a CPU or GPU [7], and both 

are usually compliant to the IEEE standard for floating point arithmetic (IEEE 754-1985). In the case of single 

precision arithmetic the backward error naturally increases significantly (compare Fig. 2, left). Furthermore it 

can be observed that the backward error strongly depends on the actual implementation. The reason for this 

behavior mainly lies in the dependence of the FFT on the accuracy of the trigonometric function values used in 

the so-called “twiddle-factors” [9]. Significant improvements in accuracy can be gained by calculating the 

twiddle-factors in double precision (and converting to single precision afterwards). As for an FFT of a given 

size the values of the trigonometric functions are known, and in the SSFM typically thousands of FFTs of the 

same size are executed, it is most efficient to store the twiddle-factors in a look-up table that needs to be 

calculated only once. The backward errors for two GPU- and two CPU-based FFT implementations - all using 

single precision arithmetic (including the widely used “Fastest Fourier Transform in the West” (FFTW) 

developed by the MIT [10]) - are shown in Fig. 2 (left). It can be observed that by a look-up table based 

approach the backward error of the FFT algorithm on the GPU can be decreased significantly and lies even 

below the CPU-based FFTW.  

The implementation of the entire SSFM on a GPU has been presented first in [11] based on the NVIDIA 

CUDA library. It has been shown that results from GPU-based simulations in double precision have negligible 

deviation from simulation results from a CPU. In double precision a speedup factor of up to 50 can be achieved 

comparing GPU and CPU simulation times (using a single CPU core only). In single precision an even higher 

speedup of more than 140 can be reached (compare Fig. 2, right). The increased performance for a higher FFT 

length can be attributed to a better utilization of the GPU hardware. Furthermore the transfer between main 

memory and graphics memory is dominating the calculation time for smaller FFT sizes.  

For bit error rate (BER) estimations with a pre-defined confidence level often Monte Carlo (MC) 

simulations are used. In the literature several improvements for MC have been presented among them “stratified 

sampling”, which is an adapted form of importance sampling [12]. Stratified sampling partitions the sample 

space by fast approximates of the real system performance. This approximate solution can be obtained in this 

case by single precision simulations. The amount of required simulations in double precision is then determined 

algorithmically for meeting a pre-defined confidence level of the results (e.g. BER level at the receiver). It has 

been shown that this approach allows a speedup of up to 180 with accuracy comparable to CPU-based 

simulations in double precision [8]. 

                             

Fig. 2. Left: Accumulation of the backward error vs. the number of split-steps for an FFT-length of 220 (using single precision).  

CPU implementations: FFTW and Intel IPP. GPU implementations: CUFFT and look-up table based; Right: Speedup of GPU vs. CPU 



OM2B.6.pdf OFC/NFOEC Technical Digest © 2013 OSA

 

3. Fields of Application 

GPU-parallelization allows modeling of fiber-optic transmission systems for the first time also in the nonlinear 

regime with a high channel count in a reasonable time. With the help of such GPU-based simulations an 80-

channel transmission system consisting of low dispersion fibers (such as DSF or NZDSF) has been investigated 

recently, and it turned out that significant nonlinear interaction also occurs between channels with a high 

spectral distance [13]. Up to now only numerical simulations with a much lower channel count seemed feasible 

due to the prohibitively large computational times.  

Another interesting field of application for GPU-parallelization is the investigation of the FEC performance 

(e.g. regarding error-floors) [14], which requires simulating a very high number of bits when using Monte-Carlo 

performance characterization. Also for the modeling of digital signal processing, which is commonly applied in 

e.g. coherent receivers, GPU-parallelization may be employed. A frequently used algorithm in that field is the 

least mean squares algorithm (LMS), e.g. for adapting the filter weights of an equalizer. Especially for large 

matrix sizes a parallelized solution can be preferable, and significant speedup factors compared to CPUs of more 

than 700 have been reported [15] on a GPU.  

Finally it shall be mentioned that apart from parallelizing algorithms on a GPU also other interesting 

options exist to speed up simulations. In many of today’s PCs multi-core CPUs are installed. It is possible to 

automatically translate the kernels originally developed for GPUs into efficient code executed on multi-core 

CPUs [16] permitting parallelization within a CPU. An alternative could be to employ cloud computing 

services, which have become popular in recent years, and some providers already offer on-demand 

establishment of elastic compute services comprising general-purpose computation on GPUs [17]. 

4. Conclusion  

Parallelization of system modeling on GPUs has been discussed. It has been shown that the highest speedup of 

more than a factor of 140 compared to CPUs (using a single processing core) can be obtained in single precision 

arithmetic. The associated inaccuracies can be reduced by pre-computing the trigonometric function values for 

the FFTs in double precision. Additionally, a stratified Monte-Carlo sampling technique can be employed for 

combining simulations with single and double precision arithmetic to meet a pre-defined accuracy level.  

5. Acknowledgements 

The author would like to thank Adam Chachaj of Krohne Messtechnik, Heinrich Müller and Peter Krummrich 

of TU Dortmund and Michael Eiselt of ADVA Optical Networking for fruitful discussions. Many simulations 

have been performed with the commercial fiber-optic system simulation tool PHOTOSS described in [18]. 

References 
[1] S. Zoldi, V. Ruban, A. Zenchuk, S. Burtsev, “Parallel Implementation of the Split-step Fourier Method For Solving Nonlinear 

Schrödinger Systems”, Society for Industrial and Applied Mathematics (SIAM) news 32 (1999). 
[2] G. E. Moore, “Cramming more components onto integrated circuits”, Electronics 38 (1965). 

[3] D. Geer, “Taking the Graphics Processor beyond Graphics”, IEEE Computer 9, 14-16 (2005). 

[4] G. Agrawal, “Nonlinear Fiber Optics”, 3rd. ed., Academic Press (2001). 
[5] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, J. Manferdelli, “High Performance Discrete Fourier Transforms on Graphics 

Processors”, Proc. of IEEE conference on Supercomputing (SC), article no. 2 (2008). 

[6] D. Kirk, W.-M. W. Hwu, “Programming Massively Parallel Processors: A Hands-On Approach”, Morgan Kaufman (2010). 
[7] S. Pachnicke, “Fiber-Optic Transmission Networks: Efficient Design and Dynamic Operation”, Springer (2011). 

[8] S. Pachnicke, A. Chachaj, C. Remmersmann, P. M. Krummrich, “Fast Parallelized Simulation of 112 Gb/s CP-QPSK Transmission 

Systems using Stratified Monte-Carlo Sampling”, Proc. of OFC, paper OWO2 (2011). 
[9] J. C. Schatzman, “Accuracy of the Discrete Fourier Transform and the Fast Fourier Transform”, SIAM J. Scientific Comput. 17, 

1150-1166 (1996). 

[10] M. Frigo, S. G. Johnson, “The design and implementation of FFTW3“, Proc. of the IEEE 93, 216–231 (2005). 
[11] S. Hellerbrand, N. Hanik, “Fast Implementation of the Split-Step Fourier Method using a Graphics Processing Unit”, Proc. of OFC, 

paper OTuD7 (2010). 

[12] P. Serena, N. Rossi, M. Bertolini, A. Bononi, “Stratified Sampling Monte Carlo Algorithm for Efficient BER Estimation in Long-
Haul Optical Transmission Systems”, IEEE J. Lightw. Technol. 27, 2404-2411(2009). 

[13] C. Xia, W. Schairer, A. Striegler, L. Rapp, M. Kuschnerov, J. F. Pina, D. van den Borne, “Impact of Channel Count and PMD on 

Polarization-Multiplexed QPSK Transmission”, IEEE J. Lightw. Technol. 29, 3223-3229 (2011). 
[14] G. Falcao, V. Silva, L. Sousa, “How GPUs can outperform ASICs for fast LDPC decoding”, Proc. of ACM International Conference 

on Supercomputing (ICS), 390-399 (2009). 

[15] W. Bozejko, A. Dobrucki, M. Walczynski, “Parallelizing of digital signal processing with using GPU”, Proc. of IEEE Signal 
Processing Algorithms, Architectures, Arrangements, and Applications conference (SPA), pp. 29-33 (2010). 

[16] J. A. Stratton, S. S. Stone, W.-M. W. Hwu, “MCUDA: An Efficient Implementation of CUDA Kernels for Multi-core CPUs”, 

Lecture Notes in Computer Science 5335, 16-30 (2008). 
[17] R. R. Exposito, G. L. Taboada, S. Ramos, J. Tourino, R. Doallo, “General-purpose computation on GPUs for high performance cloud 

computing”, Wiley J. Concurrency and Computation 24 (2012). 
[18] M. Windmann, S. Pachnicke, E. Voges, “PHOTOSS: The simulation tool for optical transmission systems”, Proc. of SPIE 5247, 51-

60 (2003). 


